Custom Search

03 July 2008

Common rail



Common rail direct fuel injection is a modern variant of direct fuel injection system for diesel engines. It features a high-pressure (over 1,000 bar/15,000 psi) fuel rail feeding individual solenoid valves, as opposed to low-pressure fuel pump feeding unit injectors (Pumpe Düse or pump nozzles), or high-pressure fuel line to mechanical valves controlled by cams on the camshaft. Third-generation common rail diesels now feature piezoelectric injectors for increased precision, with fuel pressures up to 1,800 bars (26,000 psi), although a new version of Delphi’s proven diesel common rail system will allow compliance with Euro 6 and US Tier 2 Bin 5 without costly next-generation injection technologies

History
The common rail system prototype was developed in the late 1960s by Robert Huber of Switzerland. After that, the technology was further developed by Dr. Marco Ganser at the Swiss Federal Institute of Technology in Zurich, later of Ganser-Hydromag AG (est.1995) in Oberägeri. In the mid-1990s, Dr. Shohei Itoh and Masahiko Miyaki, of the Denso Corporation, a Japanese automotive parts manufacturer, developed the common rail fuel system for heavy duty vehicles and turned it into practical use on their ECD-U2 common-rail system, which was mounted on the Hino Rising Ranger truck and sold for general use in 1995.

Modern common rail systems, whilst working on the same principle, are governed by an engine control unit (ECU) which opens each injector electronically rather than mechanically. This was extensively prototyped in the 1990s, with collaboration between Magneti Marelli, Centro Ricerche Fiat and Elasis. After research and development by the Fiat Group, the design was acquired by the German company Robert Bosch GmbH for completion of development and refinement for mass-production. In hindsight, the sale appeared to be a tactical error for Fiat as the new technology proved to be highly profitable. However, the company had little choice but to sell, as it was in a poor financial state at the time, and lacked the resources to complete development on its own.[1] In 1997 they extended its use for passenger cars. The first passenger car that used the common rail system was the 1997 model Alfa Romeo 156 1.9 JTD,[2] and later on that same year Mercedes-Benz E 320 CDI.

Common rail engines have been used in marine and locomotive applications for some time. The Cooper-Bessemer GN-8 (circa 1942) is an example of a hydraulically operated common rail diesel engine, also known as a modified common rail.

The engines are suitable for all types of road cars with diesel engines, ranging from city cars such as the Fiat Nuova Panda to large family cars like the Alfa Romeo 159.

Common rail today
Today the common rail system has brought about a revolution in diesel engine technology. Robert Bosch GmbH, Delphi Automotive Systems, Denso Corporation and Siemens VDO are the main suppliers of modern common rail systems. Different car makers refer to their common rail engines by different names:

BMW's D-engines (also used in the Land Rover Freelander TD4
Daimler's CDI (and on Chrysler's Jeep vehicles simply as CRD)
Fiat Group's (Fiat, Alfa Romeo and Lancia) JTD (also branded as MultiJet, JTDm, Ecotec CDTi, TiD, TTiD , DDiS, Quadra-Jet)
Ford Motor Company's TDCi Duratorq and Powerstroke
General Motors Opel/Vauxhall CDTi (manufactured by Fiat and GM Daewoo) and DTi (Isuzu)
General Motors Daewoo/Chevrolet VCDi (licensed from VM Motori; also branded as Ecotec CDTi)
Honda's i-CTDi
Hyundai-Kia's CRDi
Mahindra's CRDe
Maruti Suzuki's DDiS (manufactured under license from Fiat)
Mazda's CiTD
Mitsubishi's DI-D
Nissan's dCi
PSA Peugeot Citroën's HDI or HDi (Volvo S40/V50 uses engines from PSA 1,6D & 2,0D, also branded as JTD)
Renault's dCi
SsangYong's XDi (most of these engines are manufactured by DaimlerChrysler)
Subaru's Legacy TD (as of Jan 2008)
Tata's DICOR
Toyota's D-4D
Volkswagen Group: The 4.2 V8 TDI, and the latest 2.7 and 3.0 TDI (V6) engines featured on current Audi models use common rail, as opposed to the earlier unit injector engines. The 2.0 TDI in the Volkswagen Tiguan SUV uses common rail, as does the 2008 model Audi A4. Volkswagen Group has announced that the 2.0 TDI (common rail) engine will be available for Volkswagen Passat as well as the 2009 Volkswagen Jetta.[3]
Volvo D5-engines are called common rail

Principles
Solenoid or piezoelectric valves make possible fine electronic control over the injection time and quantity, and the higher pressure that the common rail technology makes available provides better fuel atomisation. In order to lower engine noise, the engine's electronic control unit can inject a small amount of diesel just before the main injection event ("pilot" injection), thus reducing its explosiveness and vibration, as well as optimising injection timing and quantity for variations in fuel quality, cold starting, and so on. Some advanced common rail fuel systems perform as many as five injections per stroke.[citation needed]

Common rail engines require no heating up time,[citation needed] and produce lower engine noise and lower emissions than older systems.

In older diesel engines, a distributor-type injection pump, regulated by the engine, supplies bursts of fuel to injectors which are simply nozzles through which the diesel is sprayed into the engine's combustion chamber. As the fuel is at low pressure and there cannot be precise control of fuel delivery, the spray is relatively coarse and the combustion process is relatively crude and inefficient.

In common rail systems, the distributor injection pump is eliminated. Instead, an extremely high pressure pump stores a reservoir of fuel at high pressure — up to 2,000 bars (29,000 psi) — in a "common rail", basically a tube that branches to supply ECU-controlled injector valves, each of which contains a precision-machined nozzle and a plunger driven by a solenoid. Driven by an ECU (which also controls the amount of fuel to the pump), the valves, rather than pump timing, control the precise moment when the fuel injection into the cylinder occurs, and also allow the pressure at which the fuel is injected into the cylinders to be increased. As a result, the fuel that is injected atomises[citation needed] easily and burns cleanly, reducing exhaust emissions and increasing efficienc.

Custom Search

Power steering



Power steering is a system for reducing the steering effort on vehicles by using an external power source to assist in turning the wheels. It is said that power steering was invented in the 1920s by Klara Gailis and George Jessup in Waltham, Massachusetts, USA. However, the earliest known patent related to power steering was filed (as recorded by the US Patent Office) on Aug. 30, 1932, by Francis W. Davis [1] There is another inventor credited with the invention of power steering by the name of Charles F. Hammond (an American, born in Detroit), who filed similar patents, the first of which was filed (as recorded by the Canadian Intellectual Property Office) on Feb. 16, 1954 [2]. Chrysler Corporation introduced the first commercially available power steering system on the 1951 Chrysler Imperial under the name Hydraguide. Most new vehicles now have power steering, owing to the trends toward front wheel drive, greater vehicle mass and wider tires, which all increase the steering effort needed. Modern vehicles would be extremely difficult to maneuver at low speeds (e.g., when parking) without assistance.

Hydraulic systems
Most power steering systems work by using a hydraulic system to turn the vehicle's wheels. The hydraulic pressure is usually provided by a gerotor or rotary vane pump driven by the vehicle's engine. A double-acting hydraulic cylinder applies a force to the steering mechanism, which in turn applies a torque to the wheels. The flow to the cylinder is controlled by valves operated by the steering wheel. There are several common valve systems of varying complexity, but they all allow the steering wheel to turn further than is necessary to simply open a valve. This is done so that the position of the steering wheel corresponds to the position of the vehicle's wheels. As the pumps employed are of the positive displacement type, the flow rate they deliver is directly proportional to the speed of the engine. This means that at high engine speeds the steering would naturally operate faster than at low engine speeds. Because this would be undesirable, a restricting orifice and flow control valve are used to direct some of the pump's output back to the hydraulic reservoir at high engine speeds. A pressure relief valve is also used to prevent a dangerous build-up of pressure when the hydraulic cylinder's piston reaches the end of the cylinder.

Some modern implementations also include an electronic pressure relief valve which can reduce the hydraulic pressure in the power steering lines as the vehicle's speed increases (this is known as variable assist power steering).

Electro-hydraulic systems
Electro-hydraulic power steering systems, sometimes abbreviated EHPS, and also sometimes called "hybrid" systems, use the same hydraulic assist technology as standard systems, but the hydraulic pressure is provided by a pump driven by an electric motor instead of being belt-driven by the engine. These systems can be found in some cars by Ford, Volkswagen, Audi, Peugeot, Citroen, SEAT, Skoda, Suzuki, Opel, MINI, Toyota, and Mazda.

Electric systemsElectric Power Steering systems, such as those found on the Honda NSX, Chevrolet Cobalt, Honda S2000, Saturn Vue V6, 2009 Toyota Corolla, Toyota RAV 4, Toyota Prius, Suzuki Swift and on most Fiat Lancia and Peugeot as also the Peugeot 307 model, use electric components, with no hydraulic systems at all. Sensors detect the motion and torque of the steering column and a computer module applies assistive power via an electric motor coupled directly to either the steering gear or steering column. This allows varying amounts of assistance to be applied depending on driving conditions. Most notably on Fiat group cars the amount of assistance can be regulated using a button named "CITY" that switches between two different assist curves (boost curve), while on Volkswagen Group (Volkswagen AG) cars, the amount of assistance is automatically regulated depending on vehicle speed.

In the event of component failure, a mechanical linkage such as a rack and pinion serves as a back-up in a manner similar to that of hydraulic systems. The software in the computer module enables the flexibility of "tuning" the characteristics of the electric power steering system to suit the preference of the vehicle designers. The "feel" is often set a bit on the light side so a criticism commonly expressed is a lack of steering "feel".[citation needed]

Electric power steering is limited to smaller vehicles.[citation needed] This is because the 12 volt electrical system is limited to 80 amps of current which, in turn, limits the size of the motor to less than 1 kilowatt. (12.5 volts times 80 amps equals 1000 watts.) Vehicles such as trucks and SUVs require a more powerful motor. An upcoming new 42 volt electrical system standard may enable use of electric power steering on larger vehicles.

Electric systems have a slight advantage in fuel efficiency (almost 1 MPG) because there is no hydraulic pump constantly running, whether assistance is required or not, and this is the main reason for their introduction. Their other big advantage is the elimination of a belt-driven engine accessory, and several high-pressure hydraulic hoses between the hydraulic pump, mounted on the engine, and the steering gear, mounted on the chassis. This greatly simplifies manufacturing.


Servotronic
Servotronic offers speed-dependent power steering, in which the amount of servo assist depends on road speed and thus provides even more comfort and convenience for the driver. The amount of power assist is greatest at low speeds, for example when parking the car. The greater assist makes it easier to maneuver the car. At higher speeds, an electronic sensing system gradually reduces the level of power assist. In this way, the driver can control the car even more precisely than with conventional power steering. Servotronic is used by a number of automakers including Audi, BMW, Volkswagen, Volvo and Porsche. Servotronic is a trademark of AM General

Custom Search

Variable valve timing



Variable valve timing, or VVT, is a generic term for an automobile piston engine technology. VVT allows the lift or duration or timing (some or all) of the intake or exhaust valves (or both) to be changed while the engine is in operation. Two-stroke engines use a Power valve system to get similar results to VVT

Overview

The i-VTEC system found in the Honda K20Z3.Piston engines normally use poppet valves for intake and exhaust. These are driven (directly or indirectly) by cams on a camshaft. The cams open the valves (lift) for a certain amount of time (duration) during each intake and exhaust cycle. The timing of the valve opening and closing is also important. The camshaft is driven by the crankshaft through timing belts, gears or chains.

The profile, or position and shape of the cam lobes on the shaft, is optimized for a certain engine RPM, and this tradeoff normally limits low-end torque or high-end power. VVT allows the cam profile to change, which results in greater efficiency and power.

At high engine speeds, an engine requires large amounts of air. However, the intake valves may close before all the air has been given a chance to flow in, reducing performance.

On the other hand, if the cam keeps the valves open for longer periods of time, as with a racing cam, problems start to occur at the lower engine speeds. This will cause unburnt fuel to exit the engine since the valves are still open. This leads to lower engine performance and increased emissions. For this reason, pure racing engines cannot idle at the low speeds (around 800rpm) expected of a road car, and idle speeds of 2000 rpm are not unusual.

Pressure to meet environmental goals and fuel efficiency standards is forcing car manufacturers to turn to VVT as a solution. Most simple VVT systems (like Mazda's S-VT) advance or retard the timing of the intake or exhaust valves. Others (like Honda's VTEC) switch between two sets of cam lobes at a certain engine RPM. Still others (like BMW's Valvetronic) can alter timing and lift continuously, which is called Continuous variable valve timing or CVVT.


History
The earliest variable valve timing systems came into existence in the nineteenth century on steam engines. Stephenson valve gear, as used on early steam locomotives supported variable cutoff, that is, changes to the time at which the admission of steam to the cylinders is cut off during the power stroke. Early approaches to variable cutoff coupled variations in admission cutoff with variations in exhaust cutoff. Admission and exhaust cutoff were decoupled with the development of the Corliss valve. These were widely used in constant speed variable load stationary engines, with admission cutoff, and therefore torque, mechanically controlled by a centrifugal governor. As poppet valves came into use, simplified valve gear using a camshaft came into use. With such engines, variable cutoff could be achieved with variable profile cams that were shifted along the camshaft by the governor.

The earliest Variable valve timing systems on internal combustion engines were on the Lycoming R-7755 hyper engine, which had cam profiles that were selectable by the pilot. This allowed the pilot to choose full take off and pursuit power or economical cruising speed, depending on what was needed.


Automotive use
Fiat was the first auto manufacturer to patent a functional automotive variable valve timing system which included variable lift. Developed by Giovanni Torazza in the late 1960s, the system used hydraulic pressure to vary the fulcrum of the cam followers (US Patent 3,641,988). The hydraulic pressure changed according to engine speed and intake pressure. The typical opening variation was 37%.

In September 1975, General Motors (GM) patented a system intended to vary valve lift. GM was interested in throttling the intake valves in order to reduce emissions. This was done by minimizing the amount of lift at low load to keep the intake velocity higher, thereby atomizing the intake charge. GM encountered problems running at very low lift, and abandoned the project.

Alfa Romeo was the first manufacturer to use a variable valve timing system in production cars (US Patent 4,231,330). The 1980 Alfa Romeo Spider 2.0 L had a mechanical VVT system in SPICA fuel injected cars sold in the USA. Later this was also used in the 1983 Alfetta 2.0 Quadrifoglio Oro models as well as other cars.

Honda's REV motorcycle engine employed on the Japanese market-only Honda CBR400F in 1983 provided a technology base for VTEC.

In 1986, Nissan developed their own form of VVT with the VG30DE(TT) engine for their Mid-4 Concept. Nissan chose to focus their NVCS (Nissan Valve-Timing Control System) mainly at low and medium speed torque production because the vast majority of the time, engine RPMs will not be at extremely high speeds. The NVCS system can produce both a smooth idle, and high amounts of low and medium speed torque. Although it can help a little at the top-end also, the main focus of the system is low and medium range torque production. The VG30DE engine was first used in the 300ZX (Z31) 300ZR model in 1987, this was the first production car to use electronically controlled VVT technology.

The next step was taken in 1989 by Honda with the VTEC system. Honda had started production of a system that gives an engine the ability to operate on two completely different cam profiles, eliminating a major compromise in engine design. One profile designed to operate the valves at low engine speeds provides good road manners, low fuel consumption and low emissions output. The second is a high lift, long duration profile and comes into operation at high engine speeds to provide an increase in power output. The VTEC system was also further developed to provide other functions in engines designed primarily for low fuel consumption. The first VTEC engine Honda produced was the B16A which was installed in the Integra, CRX, and Civic hatchback available in Japan and Europe. In 1991 the Acura NSX powered by the C30A became the first VTEC equipped vehicle available in the US. VTEC can be considered the first "cam switching" system and is also one of only a few currently in production.

In 1991, Clemson University researchers patented the Clemson Camshaft which was designed to provide continuously variable valve timing independently for both the intake and exhaust valves on a single camshaft assembly. This ability makes it suitable for both pushrod and overhead cam engine applications.[1]

In 1992 BMW introduced the VANOS system. Like the Nissan NVCS system it could provide timing variation for the intake cam in steps (or phases), the VANOS system differed in that it could provide one additional step for a total of three. Then in 1998 the Double Vanos system was introduced which significantly enhances emission management, increases output and torque, and offers better idling quality and fuel economy. Double Vanos was the first system which could provide electronically controlled, continuous timing variation for both the intake and exhaust valves. In 2001 BMW introduced the Valvetronic system. The Valvetronic system is unique in that it can continuously vary intake valve lift, in addition to timing for both the intake and exhaust valves. The precise control the system has over the intake valves allows for the intake charge to be controlled entirely by the intake valves, eliminating the need for a throttle valve and greatly reducing pumping loss. The reduction of pumping loss accounts for more than a 10% increase in power output and fuel economy.

Ford began using Variable Cam Timing in 1998 for Ford Sigma engine. Ford became the first manufacturer to use variable valve timing in a pickup-truck, with the top-selling Ford F-series in the 2004 model year. The engine used was the 5.4L 3-valve Triton.

In 2005 General Motors offered the first Variable Valve timing system for pushrod V6 engines, LZE and LZ4.

In 2007 DaimlerChrysler became the first manufacturer to produce a cam-in-block engine with independent control of exhaust cam timing relative to the intake. The 2008 Dodge Viper uses Mechadyne's concentric camshaft assembly to help boost power output to 600 bhp (450 kW).

VVT Implementations
Aftermarket Modifications - Conventional hydraulic tappet can be engineered to rapidly bleed-down for variable reduction of valve opening and duration.
Alfa Romeo Twin Spark - TS stands for "Twinspark" engine, it is equipped with Variable Valve Timing technology.

BMW
Valvetronic - Provides continuously variable lift for the intake valves; used in conjunction with Double VANOS.
VANOS - Varies intake timing by rotating the camshaft in relation to the gear.
Double VANOS - Continuously varies the timing of the intake and exhaust valves.
Ford Variable Cam Timing - Varies valve timing by rotating the camshaft.
DaimlerChrysler - Varies valve timing through the use of concentric camshafts developed by Mechadyne enabling dual-independent inlet/exhaust valve adjustment on the 2008 Dodge Viper.

GM
VVT - Varies valve timing continuously throughout the RPM range for both intake and exhaust for improved performance in both overhead valve and overhead cam engine applications.(See also Northstar System).
DCVCP (Double Continuous Variable Cam Phasing) - Varies intake and exhaust camshaft timing continuously with hydraulic vane type phaser (see also Ecotec LE5).
Alloytec - Continuously variable camshaft phasing for inlet cams. Continuously variable camshaft phasing for inlet cams and exhaust cams (High Output Alloytec).

Honda
VTEC - Varies duration, timing and lift by switching between two different sets of cam lobes.
i-VTEC - In high-output DOHC 4 cylinder engines the i-VTEC system adds continuous intake cam phasing (timing) to traditional VTEC. In economy oriented SOHC and DOHC 4 cylinder engines the i-VTEC system increases engine efficiency by delaying the closure of the intake valves under certain conditions and by using an electronically controlled throttle valve to reduce pumping loss. In SOHC V6 engines the i-VTEC system is used to provide Variable Cylinder Management which deactivates one bank of 3 cylinders during low demand operation.
VTEC-E - Unlike most VTEC systems VTEC-E is not a cam switching system, instead it uses the VTEC mechanism to allow for a lean intake charge to be used by closing one intake valve under certain conditions.

Hyundai MPI CVVT - Varies power, torque, exhaust system, and engine response.

Kawasaki - Varies position of cam by changing oil pressure thereby advancing and retarding the valve timing, 2008 Concours 14.

Lexus VVT-iE - Continuously varies the intake camshaft timing using an electric actuator.

Mazda S-VT - Varies timing by rotating the camshaft.

Mitsubishi MIVEC - Varies valve timing, duration and lift by switching between two different sets of cam lobes. The 4B1 engine series uses a different variant of MIVEC which varies timing (phase) of both intake and exhaust camshafts continuously.

Nissan
N-VCT - Varies the rotation of the cam(s) only, does not alter lift or duration of the valves.
VVL - Varies timing, duration, and lift of the intake and exhaust valves by using two different sets of cam lobes.
VVT introduced with the HR15DE, HR16DE, MR18DE and MR20DE new engines in September 2004 on the Nissan Tiida and North American version named Nissan Versa (in 2007); and finally the Nissan Sentra (in 2007).
VVEL introduced with the VQ37VHR Nissan VQ engine engine in 2007 on the Infiniti G37.
Porsche
VarioCam - Varies intake timing by adjusting tension of a cam chain.
VarioCam Plus - Varies intake valve timing by rotating the cam in relation to the cam sprocket as well as duration, timing and lift of the intake and exhaust valves by switching between two different sets of cam lobes.

Proton Campro CPS - Varies intake valve timing and lift by switching between 2 sets of cam lobes without using rocker arms as in most variable valve timing systems. Debuted in the 2008 Proton Gen-2 CPS[2][3] and the 2008 Proton Waja CPS.

PSA Peugeot Citroën CVVT - Continuous variable valve timing.

Renault Clio 182, Clio Cup and Clio V6 Mk2 VVT - variable valve timing.
Rover VVC - Varies timing with an eccentric disc.
Suzuki - VVT - Suzuki M engine

Subaru
AVCS - Varies timing (phase) with hydraulic pressure, used on turbocharged and six-cylinder Subaru engines.
AVLS - Varies duration, timing and lift by switching between two different sets of cam lobes (similar to Honda VTEC). Used by non-turbocharged Subaru engines.

Toyota
VVT - Toyota 4A-GE 20-Valve engine introduced VVT in the 1992 Corolla GT-versions.
VVT-i - Continuously varies the timing of the intake camshaft, or both the intake and exhaust camshafts (depending on application).
VVTL-i - Continuously varies the timing of the intake valves. Varies duration, timing and lift of the intake and exhaust valves by switching between two different sets of cam lobes.

Volkswagen & Audi - VVT introduced with later revisions of the 1.8t engine. Similar to VarioCam, the intake timing intentionally runs advanced and a retard point is calculated by the ECU. A hydraulic tensioner retards the intake timing.

Volvo - CVVT
Yamaha - VCT (Variable Cam Timing) Varies position of cam thereby advancing and retarding the valve timing.

Proton - VVT introduced in the Waja 1.8's F4P renault engine (toyota supplies the VVT to renault)

Custom Search

Engine control unit



An engine control unit (ECU) is an electronic control unit which controls various aspects of an internal combustion engine's operation. The simplest ECUs control only the quantity of fuel injected into each cylinder each engine cycle. More advanced ECUs found on most modern cars also control the ignition timing, variable valve timing (VVT), the level of boost maintained by the turbocharger (in turbocharged cars), and control other peripherals.

ECUs determine the quantity of fuel, ignition timing and other parameters by monitoring the engine through sensors. These can include, MAP sensor, throttle position sensor, air temperature sensor, oxygen sensor and many others. Often this is done using a control loop (such as a PID controller).

Before ECUs most engine parameters were fixed. The quantity of fuel per cylinder per engine cycle was determined by a carburetor or injector pump.

ECU operation

Control of fuel injection
For an engine with fuel injection, an ECU will determine the quantity of fuel to inject based on a number of parameters. If the throttle pedal is pressed further down, this will open the throttle body and allow more air to be pulled into the engine. The ECU will inject more fuel according to how much air is passing into the engine. If the engine has not warmed up yet, more fuel will be injected (causing the engine to run slightly 'rich' until the engine warms up).

Control of ignition timing
A spark ignition engine requires a spark to initiate combustion in the combustion chamber. An ECU can adjust the exact timing of the spark (called ignition timing) to provide better power and economy. If the ECU detects knock, a condition which is potentially destructive to engines, and "judges" it to be the result of the ignition timing being too early in the compression stroke, it will delay (retard) the timing of the spark to prevent this.

A second, more common source, cause, of knock/ping is operating the engine in too low of an RPM range for the "work" requirement of the moment. In this case the knock/ping results from the piston not being able to move downward as fast as the flame front is expanding.

But this latter mostly applies only to manual transmission equipped vehicles. The ECU controlling an automatic transmission would simply downshift the transmission were this the cause of knock/ping

Control of idle speed
Most engine systems have idle speed control built into the ECU. The engine RPM is monitored by the crankshaft position sensor which plays a primary role in the engine timing functions for fuel injection, spark events, and valve timing. Idle speed is controlled by a programmable throttle stop or an idle air bypass control stepper motor. Early carburetor based systems used a programmable throttle stop using a bidirectional DC motor. Early TBI systems used an idle air control stepper motor. Effective idle speed control must anticipate the engine load at idle. Changes in this idle load may come from HVAC systems, power steering systems, power brake systems, and electrical charging and supply systems. Engine temperature and transmission status also may change the engine load and/or the idle speed value desired.

A full authority throttle control system may be used to control idle speed, provide cruise control functions and top speed limitation

Control of variable valve timing
Some engines have Variable Valve Timing. In such an engine, the ECU controls the time in the engine cycle at which the valves open. The valves are usually opened later at higher speed than at lower speed. This can optimise the flow of air into the cylinder, increasing power and economy.

Electronic valve control

Experimental engines have been made and tested that have no camshaft, but has full electronic control of the intake and exhaust valve opening, valve closing and area of the valve opening. Such engines can be started and run with out a starter motor for certain multi-cylinder engines equipped with precision timed electronic ignition and fuel injection. Such a static-start engine would provide the efficiency and pollution-reductiton improvements of a mild hybrid-electric drive, but without the expense and complexity of an oversized starter motor

Custom Search

Malfunction Indicator Lamp




A Malfunction Indicator Lamp (MIL) is an indicator of the internal status of a car engine. It is found on the instrument console of most automobiles. When illuminated, it is typically either a red or amber color. On vehicles equipped with OBD-II, the light has two stages: steady (indicating a minor fault such as a loose gas cap or failing oxygen sensor) and flashing (indicating a severe fault, such as catalytic converter problems or engine misfire). When the MIL is lit, the engine control unit stores a fault code related to the malfunction, which can be retrieved with a scan tool and used for further diagnosis. The Malfunction Indicator Lamp is usually labeled with the text Check Engine, Service Engine Soon, Check Engine Soon, or a picture of an engine.

The MIL became required on passenger cars in the United States due to emission control legislation in California, with the intention that the light would illuminate if there was a problem which would cause the vehicle to have excessive pollutant emissions. The owner would be aware that the emission control system needed to be serviced, and would be prevented from renewing their registration in the state of California.[citation needed] In most states and regions that require emissions inspections, a lit MIL on an OBD-I or OBD-II vehicle will cause the vehicle to fail the inspection


"Trouble" indicator
Some older vehicles had a single indicator labeled "Trouble" or "Engine"; this was not an MIL, but a warning light meant to indicate serious trouble with the engine (low oil pressure, overheating, or charging system problems) and an imminent breakdown. This usage of the "Engine" light was discontinued in the mid-1980s, to prevent confusion with the MIL.

Odometer triggering
Some vehicles made in the late 80s and early-to-mid 90s have a MIL that illuminates based on the odometer reading, regardless of what is going on in the engine. For example, in several Mazda models, the light will come on at 80,000 miles and remain lit without generating a computer trouble code. This was done in order to remind the driver to change the oxygen sensor.

All American production 1973-1976 Chrysler/Plymouth/Dodge/Imperial cars had a similar odometer-triggered reminder: "Check EGR", which was reset after service at a Chrysler dealership