Custom Search

03 July 2008

Common rail



Common rail direct fuel injection is a modern variant of direct fuel injection system for diesel engines. It features a high-pressure (over 1,000 bar/15,000 psi) fuel rail feeding individual solenoid valves, as opposed to low-pressure fuel pump feeding unit injectors (Pumpe Düse or pump nozzles), or high-pressure fuel line to mechanical valves controlled by cams on the camshaft. Third-generation common rail diesels now feature piezoelectric injectors for increased precision, with fuel pressures up to 1,800 bars (26,000 psi), although a new version of Delphi’s proven diesel common rail system will allow compliance with Euro 6 and US Tier 2 Bin 5 without costly next-generation injection technologies

History
The common rail system prototype was developed in the late 1960s by Robert Huber of Switzerland. After that, the technology was further developed by Dr. Marco Ganser at the Swiss Federal Institute of Technology in Zurich, later of Ganser-Hydromag AG (est.1995) in Oberägeri. In the mid-1990s, Dr. Shohei Itoh and Masahiko Miyaki, of the Denso Corporation, a Japanese automotive parts manufacturer, developed the common rail fuel system for heavy duty vehicles and turned it into practical use on their ECD-U2 common-rail system, which was mounted on the Hino Rising Ranger truck and sold for general use in 1995.

Modern common rail systems, whilst working on the same principle, are governed by an engine control unit (ECU) which opens each injector electronically rather than mechanically. This was extensively prototyped in the 1990s, with collaboration between Magneti Marelli, Centro Ricerche Fiat and Elasis. After research and development by the Fiat Group, the design was acquired by the German company Robert Bosch GmbH for completion of development and refinement for mass-production. In hindsight, the sale appeared to be a tactical error for Fiat as the new technology proved to be highly profitable. However, the company had little choice but to sell, as it was in a poor financial state at the time, and lacked the resources to complete development on its own.[1] In 1997 they extended its use for passenger cars. The first passenger car that used the common rail system was the 1997 model Alfa Romeo 156 1.9 JTD,[2] and later on that same year Mercedes-Benz E 320 CDI.

Common rail engines have been used in marine and locomotive applications for some time. The Cooper-Bessemer GN-8 (circa 1942) is an example of a hydraulically operated common rail diesel engine, also known as a modified common rail.

The engines are suitable for all types of road cars with diesel engines, ranging from city cars such as the Fiat Nuova Panda to large family cars like the Alfa Romeo 159.

Common rail today
Today the common rail system has brought about a revolution in diesel engine technology. Robert Bosch GmbH, Delphi Automotive Systems, Denso Corporation and Siemens VDO are the main suppliers of modern common rail systems. Different car makers refer to their common rail engines by different names:

BMW's D-engines (also used in the Land Rover Freelander TD4
Daimler's CDI (and on Chrysler's Jeep vehicles simply as CRD)
Fiat Group's (Fiat, Alfa Romeo and Lancia) JTD (also branded as MultiJet, JTDm, Ecotec CDTi, TiD, TTiD , DDiS, Quadra-Jet)
Ford Motor Company's TDCi Duratorq and Powerstroke
General Motors Opel/Vauxhall CDTi (manufactured by Fiat and GM Daewoo) and DTi (Isuzu)
General Motors Daewoo/Chevrolet VCDi (licensed from VM Motori; also branded as Ecotec CDTi)
Honda's i-CTDi
Hyundai-Kia's CRDi
Mahindra's CRDe
Maruti Suzuki's DDiS (manufactured under license from Fiat)
Mazda's CiTD
Mitsubishi's DI-D
Nissan's dCi
PSA Peugeot Citroën's HDI or HDi (Volvo S40/V50 uses engines from PSA 1,6D & 2,0D, also branded as JTD)
Renault's dCi
SsangYong's XDi (most of these engines are manufactured by DaimlerChrysler)
Subaru's Legacy TD (as of Jan 2008)
Tata's DICOR
Toyota's D-4D
Volkswagen Group: The 4.2 V8 TDI, and the latest 2.7 and 3.0 TDI (V6) engines featured on current Audi models use common rail, as opposed to the earlier unit injector engines. The 2.0 TDI in the Volkswagen Tiguan SUV uses common rail, as does the 2008 model Audi A4. Volkswagen Group has announced that the 2.0 TDI (common rail) engine will be available for Volkswagen Passat as well as the 2009 Volkswagen Jetta.[3]
Volvo D5-engines are called common rail

Principles
Solenoid or piezoelectric valves make possible fine electronic control over the injection time and quantity, and the higher pressure that the common rail technology makes available provides better fuel atomisation. In order to lower engine noise, the engine's electronic control unit can inject a small amount of diesel just before the main injection event ("pilot" injection), thus reducing its explosiveness and vibration, as well as optimising injection timing and quantity for variations in fuel quality, cold starting, and so on. Some advanced common rail fuel systems perform as many as five injections per stroke.[citation needed]

Common rail engines require no heating up time,[citation needed] and produce lower engine noise and lower emissions than older systems.

In older diesel engines, a distributor-type injection pump, regulated by the engine, supplies bursts of fuel to injectors which are simply nozzles through which the diesel is sprayed into the engine's combustion chamber. As the fuel is at low pressure and there cannot be precise control of fuel delivery, the spray is relatively coarse and the combustion process is relatively crude and inefficient.

In common rail systems, the distributor injection pump is eliminated. Instead, an extremely high pressure pump stores a reservoir of fuel at high pressure — up to 2,000 bars (29,000 psi) — in a "common rail", basically a tube that branches to supply ECU-controlled injector valves, each of which contains a precision-machined nozzle and a plunger driven by a solenoid. Driven by an ECU (which also controls the amount of fuel to the pump), the valves, rather than pump timing, control the precise moment when the fuel injection into the cylinder occurs, and also allow the pressure at which the fuel is injected into the cylinders to be increased. As a result, the fuel that is injected atomises[citation needed] easily and burns cleanly, reducing exhaust emissions and increasing efficienc.

Custom Search

Power steering



Power steering is a system for reducing the steering effort on vehicles by using an external power source to assist in turning the wheels. It is said that power steering was invented in the 1920s by Klara Gailis and George Jessup in Waltham, Massachusetts, USA. However, the earliest known patent related to power steering was filed (as recorded by the US Patent Office) on Aug. 30, 1932, by Francis W. Davis [1] There is another inventor credited with the invention of power steering by the name of Charles F. Hammond (an American, born in Detroit), who filed similar patents, the first of which was filed (as recorded by the Canadian Intellectual Property Office) on Feb. 16, 1954 [2]. Chrysler Corporation introduced the first commercially available power steering system on the 1951 Chrysler Imperial under the name Hydraguide. Most new vehicles now have power steering, owing to the trends toward front wheel drive, greater vehicle mass and wider tires, which all increase the steering effort needed. Modern vehicles would be extremely difficult to maneuver at low speeds (e.g., when parking) without assistance.

Hydraulic systems
Most power steering systems work by using a hydraulic system to turn the vehicle's wheels. The hydraulic pressure is usually provided by a gerotor or rotary vane pump driven by the vehicle's engine. A double-acting hydraulic cylinder applies a force to the steering mechanism, which in turn applies a torque to the wheels. The flow to the cylinder is controlled by valves operated by the steering wheel. There are several common valve systems of varying complexity, but they all allow the steering wheel to turn further than is necessary to simply open a valve. This is done so that the position of the steering wheel corresponds to the position of the vehicle's wheels. As the pumps employed are of the positive displacement type, the flow rate they deliver is directly proportional to the speed of the engine. This means that at high engine speeds the steering would naturally operate faster than at low engine speeds. Because this would be undesirable, a restricting orifice and flow control valve are used to direct some of the pump's output back to the hydraulic reservoir at high engine speeds. A pressure relief valve is also used to prevent a dangerous build-up of pressure when the hydraulic cylinder's piston reaches the end of the cylinder.

Some modern implementations also include an electronic pressure relief valve which can reduce the hydraulic pressure in the power steering lines as the vehicle's speed increases (this is known as variable assist power steering).

Electro-hydraulic systems
Electro-hydraulic power steering systems, sometimes abbreviated EHPS, and also sometimes called "hybrid" systems, use the same hydraulic assist technology as standard systems, but the hydraulic pressure is provided by a pump driven by an electric motor instead of being belt-driven by the engine. These systems can be found in some cars by Ford, Volkswagen, Audi, Peugeot, Citroen, SEAT, Skoda, Suzuki, Opel, MINI, Toyota, and Mazda.

Electric systemsElectric Power Steering systems, such as those found on the Honda NSX, Chevrolet Cobalt, Honda S2000, Saturn Vue V6, 2009 Toyota Corolla, Toyota RAV 4, Toyota Prius, Suzuki Swift and on most Fiat Lancia and Peugeot as also the Peugeot 307 model, use electric components, with no hydraulic systems at all. Sensors detect the motion and torque of the steering column and a computer module applies assistive power via an electric motor coupled directly to either the steering gear or steering column. This allows varying amounts of assistance to be applied depending on driving conditions. Most notably on Fiat group cars the amount of assistance can be regulated using a button named "CITY" that switches between two different assist curves (boost curve), while on Volkswagen Group (Volkswagen AG) cars, the amount of assistance is automatically regulated depending on vehicle speed.

In the event of component failure, a mechanical linkage such as a rack and pinion serves as a back-up in a manner similar to that of hydraulic systems. The software in the computer module enables the flexibility of "tuning" the characteristics of the electric power steering system to suit the preference of the vehicle designers. The "feel" is often set a bit on the light side so a criticism commonly expressed is a lack of steering "feel".[citation needed]

Electric power steering is limited to smaller vehicles.[citation needed] This is because the 12 volt electrical system is limited to 80 amps of current which, in turn, limits the size of the motor to less than 1 kilowatt. (12.5 volts times 80 amps equals 1000 watts.) Vehicles such as trucks and SUVs require a more powerful motor. An upcoming new 42 volt electrical system standard may enable use of electric power steering on larger vehicles.

Electric systems have a slight advantage in fuel efficiency (almost 1 MPG) because there is no hydraulic pump constantly running, whether assistance is required or not, and this is the main reason for their introduction. Their other big advantage is the elimination of a belt-driven engine accessory, and several high-pressure hydraulic hoses between the hydraulic pump, mounted on the engine, and the steering gear, mounted on the chassis. This greatly simplifies manufacturing.


Servotronic
Servotronic offers speed-dependent power steering, in which the amount of servo assist depends on road speed and thus provides even more comfort and convenience for the driver. The amount of power assist is greatest at low speeds, for example when parking the car. The greater assist makes it easier to maneuver the car. At higher speeds, an electronic sensing system gradually reduces the level of power assist. In this way, the driver can control the car even more precisely than with conventional power steering. Servotronic is used by a number of automakers including Audi, BMW, Volkswagen, Volvo and Porsche. Servotronic is a trademark of AM General

Custom Search

Variable valve timing



Variable valve timing, or VVT, is a generic term for an automobile piston engine technology. VVT allows the lift or duration or timing (some or all) of the intake or exhaust valves (or both) to be changed while the engine is in operation. Two-stroke engines use a Power valve system to get similar results to VVT

Overview

The i-VTEC system found in the Honda K20Z3.Piston engines normally use poppet valves for intake and exhaust. These are driven (directly or indirectly) by cams on a camshaft. The cams open the valves (lift) for a certain amount of time (duration) during each intake and exhaust cycle. The timing of the valve opening and closing is also important. The camshaft is driven by the crankshaft through timing belts, gears or chains.

The profile, or position and shape of the cam lobes on the shaft, is optimized for a certain engine RPM, and this tradeoff normally limits low-end torque or high-end power. VVT allows the cam profile to change, which results in greater efficiency and power.

At high engine speeds, an engine requires large amounts of air. However, the intake valves may close before all the air has been given a chance to flow in, reducing performance.

On the other hand, if the cam keeps the valves open for longer periods of time, as with a racing cam, problems start to occur at the lower engine speeds. This will cause unburnt fuel to exit the engine since the valves are still open. This leads to lower engine performance and increased emissions. For this reason, pure racing engines cannot idle at the low speeds (around 800rpm) expected of a road car, and idle speeds of 2000 rpm are not unusual.

Pressure to meet environmental goals and fuel efficiency standards is forcing car manufacturers to turn to VVT as a solution. Most simple VVT systems (like Mazda's S-VT) advance or retard the timing of the intake or exhaust valves. Others (like Honda's VTEC) switch between two sets of cam lobes at a certain engine RPM. Still others (like BMW's Valvetronic) can alter timing and lift continuously, which is called Continuous variable valve timing or CVVT.


History
The earliest variable valve timing systems came into existence in the nineteenth century on steam engines. Stephenson valve gear, as used on early steam locomotives supported variable cutoff, that is, changes to the time at which the admission of steam to the cylinders is cut off during the power stroke. Early approaches to variable cutoff coupled variations in admission cutoff with variations in exhaust cutoff. Admission and exhaust cutoff were decoupled with the development of the Corliss valve. These were widely used in constant speed variable load stationary engines, with admission cutoff, and therefore torque, mechanically controlled by a centrifugal governor. As poppet valves came into use, simplified valve gear using a camshaft came into use. With such engines, variable cutoff could be achieved with variable profile cams that were shifted along the camshaft by the governor.

The earliest Variable valve timing systems on internal combustion engines were on the Lycoming R-7755 hyper engine, which had cam profiles that were selectable by the pilot. This allowed the pilot to choose full take off and pursuit power or economical cruising speed, depending on what was needed.


Automotive use
Fiat was the first auto manufacturer to patent a functional automotive variable valve timing system which included variable lift. Developed by Giovanni Torazza in the late 1960s, the system used hydraulic pressure to vary the fulcrum of the cam followers (US Patent 3,641,988). The hydraulic pressure changed according to engine speed and intake pressure. The typical opening variation was 37%.

In September 1975, General Motors (GM) patented a system intended to vary valve lift. GM was interested in throttling the intake valves in order to reduce emissions. This was done by minimizing the amount of lift at low load to keep the intake velocity higher, thereby atomizing the intake charge. GM encountered problems running at very low lift, and abandoned the project.

Alfa Romeo was the first manufacturer to use a variable valve timing system in production cars (US Patent 4,231,330). The 1980 Alfa Romeo Spider 2.0 L had a mechanical VVT system in SPICA fuel injected cars sold in the USA. Later this was also used in the 1983 Alfetta 2.0 Quadrifoglio Oro models as well as other cars.

Honda's REV motorcycle engine employed on the Japanese market-only Honda CBR400F in 1983 provided a technology base for VTEC.

In 1986, Nissan developed their own form of VVT with the VG30DE(TT) engine for their Mid-4 Concept. Nissan chose to focus their NVCS (Nissan Valve-Timing Control System) mainly at low and medium speed torque production because the vast majority of the time, engine RPMs will not be at extremely high speeds. The NVCS system can produce both a smooth idle, and high amounts of low and medium speed torque. Although it can help a little at the top-end also, the main focus of the system is low and medium range torque production. The VG30DE engine was first used in the 300ZX (Z31) 300ZR model in 1987, this was the first production car to use electronically controlled VVT technology.

The next step was taken in 1989 by Honda with the VTEC system. Honda had started production of a system that gives an engine the ability to operate on two completely different cam profiles, eliminating a major compromise in engine design. One profile designed to operate the valves at low engine speeds provides good road manners, low fuel consumption and low emissions output. The second is a high lift, long duration profile and comes into operation at high engine speeds to provide an increase in power output. The VTEC system was also further developed to provide other functions in engines designed primarily for low fuel consumption. The first VTEC engine Honda produced was the B16A which was installed in the Integra, CRX, and Civic hatchback available in Japan and Europe. In 1991 the Acura NSX powered by the C30A became the first VTEC equipped vehicle available in the US. VTEC can be considered the first "cam switching" system and is also one of only a few currently in production.

In 1991, Clemson University researchers patented the Clemson Camshaft which was designed to provide continuously variable valve timing independently for both the intake and exhaust valves on a single camshaft assembly. This ability makes it suitable for both pushrod and overhead cam engine applications.[1]

In 1992 BMW introduced the VANOS system. Like the Nissan NVCS system it could provide timing variation for the intake cam in steps (or phases), the VANOS system differed in that it could provide one additional step for a total of three. Then in 1998 the Double Vanos system was introduced which significantly enhances emission management, increases output and torque, and offers better idling quality and fuel economy. Double Vanos was the first system which could provide electronically controlled, continuous timing variation for both the intake and exhaust valves. In 2001 BMW introduced the Valvetronic system. The Valvetronic system is unique in that it can continuously vary intake valve lift, in addition to timing for both the intake and exhaust valves. The precise control the system has over the intake valves allows for the intake charge to be controlled entirely by the intake valves, eliminating the need for a throttle valve and greatly reducing pumping loss. The reduction of pumping loss accounts for more than a 10% increase in power output and fuel economy.

Ford began using Variable Cam Timing in 1998 for Ford Sigma engine. Ford became the first manufacturer to use variable valve timing in a pickup-truck, with the top-selling Ford F-series in the 2004 model year. The engine used was the 5.4L 3-valve Triton.

In 2005 General Motors offered the first Variable Valve timing system for pushrod V6 engines, LZE and LZ4.

In 2007 DaimlerChrysler became the first manufacturer to produce a cam-in-block engine with independent control of exhaust cam timing relative to the intake. The 2008 Dodge Viper uses Mechadyne's concentric camshaft assembly to help boost power output to 600 bhp (450 kW).

VVT Implementations
Aftermarket Modifications - Conventional hydraulic tappet can be engineered to rapidly bleed-down for variable reduction of valve opening and duration.
Alfa Romeo Twin Spark - TS stands for "Twinspark" engine, it is equipped with Variable Valve Timing technology.

BMW
Valvetronic - Provides continuously variable lift for the intake valves; used in conjunction with Double VANOS.
VANOS - Varies intake timing by rotating the camshaft in relation to the gear.
Double VANOS - Continuously varies the timing of the intake and exhaust valves.
Ford Variable Cam Timing - Varies valve timing by rotating the camshaft.
DaimlerChrysler - Varies valve timing through the use of concentric camshafts developed by Mechadyne enabling dual-independent inlet/exhaust valve adjustment on the 2008 Dodge Viper.

GM
VVT - Varies valve timing continuously throughout the RPM range for both intake and exhaust for improved performance in both overhead valve and overhead cam engine applications.(See also Northstar System).
DCVCP (Double Continuous Variable Cam Phasing) - Varies intake and exhaust camshaft timing continuously with hydraulic vane type phaser (see also Ecotec LE5).
Alloytec - Continuously variable camshaft phasing for inlet cams. Continuously variable camshaft phasing for inlet cams and exhaust cams (High Output Alloytec).

Honda
VTEC - Varies duration, timing and lift by switching between two different sets of cam lobes.
i-VTEC - In high-output DOHC 4 cylinder engines the i-VTEC system adds continuous intake cam phasing (timing) to traditional VTEC. In economy oriented SOHC and DOHC 4 cylinder engines the i-VTEC system increases engine efficiency by delaying the closure of the intake valves under certain conditions and by using an electronically controlled throttle valve to reduce pumping loss. In SOHC V6 engines the i-VTEC system is used to provide Variable Cylinder Management which deactivates one bank of 3 cylinders during low demand operation.
VTEC-E - Unlike most VTEC systems VTEC-E is not a cam switching system, instead it uses the VTEC mechanism to allow for a lean intake charge to be used by closing one intake valve under certain conditions.

Hyundai MPI CVVT - Varies power, torque, exhaust system, and engine response.

Kawasaki - Varies position of cam by changing oil pressure thereby advancing and retarding the valve timing, 2008 Concours 14.

Lexus VVT-iE - Continuously varies the intake camshaft timing using an electric actuator.

Mazda S-VT - Varies timing by rotating the camshaft.

Mitsubishi MIVEC - Varies valve timing, duration and lift by switching between two different sets of cam lobes. The 4B1 engine series uses a different variant of MIVEC which varies timing (phase) of both intake and exhaust camshafts continuously.

Nissan
N-VCT - Varies the rotation of the cam(s) only, does not alter lift or duration of the valves.
VVL - Varies timing, duration, and lift of the intake and exhaust valves by using two different sets of cam lobes.
VVT introduced with the HR15DE, HR16DE, MR18DE and MR20DE new engines in September 2004 on the Nissan Tiida and North American version named Nissan Versa (in 2007); and finally the Nissan Sentra (in 2007).
VVEL introduced with the VQ37VHR Nissan VQ engine engine in 2007 on the Infiniti G37.
Porsche
VarioCam - Varies intake timing by adjusting tension of a cam chain.
VarioCam Plus - Varies intake valve timing by rotating the cam in relation to the cam sprocket as well as duration, timing and lift of the intake and exhaust valves by switching between two different sets of cam lobes.

Proton Campro CPS - Varies intake valve timing and lift by switching between 2 sets of cam lobes without using rocker arms as in most variable valve timing systems. Debuted in the 2008 Proton Gen-2 CPS[2][3] and the 2008 Proton Waja CPS.

PSA Peugeot Citroën CVVT - Continuous variable valve timing.

Renault Clio 182, Clio Cup and Clio V6 Mk2 VVT - variable valve timing.
Rover VVC - Varies timing with an eccentric disc.
Suzuki - VVT - Suzuki M engine

Subaru
AVCS - Varies timing (phase) with hydraulic pressure, used on turbocharged and six-cylinder Subaru engines.
AVLS - Varies duration, timing and lift by switching between two different sets of cam lobes (similar to Honda VTEC). Used by non-turbocharged Subaru engines.

Toyota
VVT - Toyota 4A-GE 20-Valve engine introduced VVT in the 1992 Corolla GT-versions.
VVT-i - Continuously varies the timing of the intake camshaft, or both the intake and exhaust camshafts (depending on application).
VVTL-i - Continuously varies the timing of the intake valves. Varies duration, timing and lift of the intake and exhaust valves by switching between two different sets of cam lobes.

Volkswagen & Audi - VVT introduced with later revisions of the 1.8t engine. Similar to VarioCam, the intake timing intentionally runs advanced and a retard point is calculated by the ECU. A hydraulic tensioner retards the intake timing.

Volvo - CVVT
Yamaha - VCT (Variable Cam Timing) Varies position of cam thereby advancing and retarding the valve timing.

Proton - VVT introduced in the Waja 1.8's F4P renault engine (toyota supplies the VVT to renault)

Custom Search

Engine control unit



An engine control unit (ECU) is an electronic control unit which controls various aspects of an internal combustion engine's operation. The simplest ECUs control only the quantity of fuel injected into each cylinder each engine cycle. More advanced ECUs found on most modern cars also control the ignition timing, variable valve timing (VVT), the level of boost maintained by the turbocharger (in turbocharged cars), and control other peripherals.

ECUs determine the quantity of fuel, ignition timing and other parameters by monitoring the engine through sensors. These can include, MAP sensor, throttle position sensor, air temperature sensor, oxygen sensor and many others. Often this is done using a control loop (such as a PID controller).

Before ECUs most engine parameters were fixed. The quantity of fuel per cylinder per engine cycle was determined by a carburetor or injector pump.

ECU operation

Control of fuel injection
For an engine with fuel injection, an ECU will determine the quantity of fuel to inject based on a number of parameters. If the throttle pedal is pressed further down, this will open the throttle body and allow more air to be pulled into the engine. The ECU will inject more fuel according to how much air is passing into the engine. If the engine has not warmed up yet, more fuel will be injected (causing the engine to run slightly 'rich' until the engine warms up).

Control of ignition timing
A spark ignition engine requires a spark to initiate combustion in the combustion chamber. An ECU can adjust the exact timing of the spark (called ignition timing) to provide better power and economy. If the ECU detects knock, a condition which is potentially destructive to engines, and "judges" it to be the result of the ignition timing being too early in the compression stroke, it will delay (retard) the timing of the spark to prevent this.

A second, more common source, cause, of knock/ping is operating the engine in too low of an RPM range for the "work" requirement of the moment. In this case the knock/ping results from the piston not being able to move downward as fast as the flame front is expanding.

But this latter mostly applies only to manual transmission equipped vehicles. The ECU controlling an automatic transmission would simply downshift the transmission were this the cause of knock/ping

Control of idle speed
Most engine systems have idle speed control built into the ECU. The engine RPM is monitored by the crankshaft position sensor which plays a primary role in the engine timing functions for fuel injection, spark events, and valve timing. Idle speed is controlled by a programmable throttle stop or an idle air bypass control stepper motor. Early carburetor based systems used a programmable throttle stop using a bidirectional DC motor. Early TBI systems used an idle air control stepper motor. Effective idle speed control must anticipate the engine load at idle. Changes in this idle load may come from HVAC systems, power steering systems, power brake systems, and electrical charging and supply systems. Engine temperature and transmission status also may change the engine load and/or the idle speed value desired.

A full authority throttle control system may be used to control idle speed, provide cruise control functions and top speed limitation

Control of variable valve timing
Some engines have Variable Valve Timing. In such an engine, the ECU controls the time in the engine cycle at which the valves open. The valves are usually opened later at higher speed than at lower speed. This can optimise the flow of air into the cylinder, increasing power and economy.

Electronic valve control

Experimental engines have been made and tested that have no camshaft, but has full electronic control of the intake and exhaust valve opening, valve closing and area of the valve opening. Such engines can be started and run with out a starter motor for certain multi-cylinder engines equipped with precision timed electronic ignition and fuel injection. Such a static-start engine would provide the efficiency and pollution-reductiton improvements of a mild hybrid-electric drive, but without the expense and complexity of an oversized starter motor

Custom Search

Malfunction Indicator Lamp




A Malfunction Indicator Lamp (MIL) is an indicator of the internal status of a car engine. It is found on the instrument console of most automobiles. When illuminated, it is typically either a red or amber color. On vehicles equipped with OBD-II, the light has two stages: steady (indicating a minor fault such as a loose gas cap or failing oxygen sensor) and flashing (indicating a severe fault, such as catalytic converter problems or engine misfire). When the MIL is lit, the engine control unit stores a fault code related to the malfunction, which can be retrieved with a scan tool and used for further diagnosis. The Malfunction Indicator Lamp is usually labeled with the text Check Engine, Service Engine Soon, Check Engine Soon, or a picture of an engine.

The MIL became required on passenger cars in the United States due to emission control legislation in California, with the intention that the light would illuminate if there was a problem which would cause the vehicle to have excessive pollutant emissions. The owner would be aware that the emission control system needed to be serviced, and would be prevented from renewing their registration in the state of California.[citation needed] In most states and regions that require emissions inspections, a lit MIL on an OBD-I or OBD-II vehicle will cause the vehicle to fail the inspection


"Trouble" indicator
Some older vehicles had a single indicator labeled "Trouble" or "Engine"; this was not an MIL, but a warning light meant to indicate serious trouble with the engine (low oil pressure, overheating, or charging system problems) and an imminent breakdown. This usage of the "Engine" light was discontinued in the mid-1980s, to prevent confusion with the MIL.

Odometer triggering
Some vehicles made in the late 80s and early-to-mid 90s have a MIL that illuminates based on the odometer reading, regardless of what is going on in the engine. For example, in several Mazda models, the light will come on at 80,000 miles and remain lit without generating a computer trouble code. This was done in order to remind the driver to change the oxygen sensor.

All American production 1973-1976 Chrysler/Plymouth/Dodge/Imperial cars had a similar odometer-triggered reminder: "Check EGR", which was reset after service at a Chrysler dealership

Custom Search

27 June 2008

IGNITION SYSTEM



An ignition system is a system for igniting a fuel-air mixture. It is best known in the field of internal combustion engines but also has other applications, e.g. in oil-fired and gas-fired boilers. The earliest internal combustion engines used a flame, or a heated tube, for ignition but these were quickly replaced by systems using an electric spark.

HISTORY

Magneto systems
The simplest form of spark ignition is that using a magneto. The engine spins a magnet inside a coil, and also operates a contact breaker, interrupting the current and causing the voltage to be increased sufficiently to jump a small gap. The spark plugs are connected directly from the magneto output. Magnetos are not used in modern cars, but because they generate their own electricity they are often found on piston aircraft engines and small engines such as those found in mopeds, lawnmowers, snowblowers, chainsaws, etc. where there is no battery

Magnetos were used on the small engine's ancestor, the stationary "hit or miss" engine which was used in the early twentieth century, on older gasoline or distillate farm tractors before battery starting and lighting became common, and on aircraft piston engines. Magnetos were used in these engines because their simplicity and self-contained nature was more reliable, and because magnetos weighed less than having a battery and generator or alternator.

Aircraft engines usually have multiple magnetos to provide redundancy in the event of a failure. Some older automobiles had both a magneto system and a battery actuated system (see below) running simultaneously to ensure proper ignition under all conditions with the limited performance each system provided at the time.

Switchable systems
The output of a magneto depends on the speed of the engine, and therefore starting can be problematic. Some magnetos include an impulse system, which spins the magnet quickly at the proper moment, making easier starting at slow cranking speeds. Some engines, such as aircraft but also the Ford Model T, used a system which relied on non rechargeable dry cells, (like large flashlight batteries, not what are usually thought of as automobile batteries today) to start the engine or for running at low speed; then the operator would manually switch the ignition over to magneto operation for high speed operation.

In order to provide high voltage for the spark from the low voltage batteries, however, a "tickler" was used, which was essentially a larger version of the once widespread electric buzzer. With this apparatus, the direct current passes through an electromagnetic coil which pulls open a pair of contact points, interrupting the current; the magnetic field collapses, the spring-loaded points close again, the circuit is reestablished, and the cycle repeats rapidly. The rapidly collapsing magnetic field, however, induces a high voltage across the coil which can only relieve itself by arcing across the contact points; while in the case of the buzzer this is a problem as it causes the points to oxidize and/or weld together, in the case of the ignition system this becomes the source of the high voltage to operate the spark plugs.

In this mode of operation, the coil would "buzz" continuously, producing a constant train of sparks. The entire apparatus was known as the Model T spark coil (in contrast to the modern ignition coil which is only the actual coil component of the system), and long after the demise of the Model T as transportation they remained a popular self-contained source of high voltage for electrical home experimenters, appearing in articles in magazines such as Popular Mechanics and projects for school science fairs as late as the early 1960s. In the UK these devices were commonly known as trembler coils and were popular in cars pre-1910, and also in commercial vehicles with large engines until around 1925 to ease starting.

The Model T (built into the flywheel) differed from modern implementations by not providing high voltage directly at the output; the maximum voltage produced was about 30 volts, and therefore also had to be run through the spark coil to provide high enough voltage for ignition, as described above, although the coil would not "buzz" continuously in this case, only going through one cycle per spark. In either case, the high voltage was switched to the appropriate spark plug by the timer mounted on the front of the engine, the equivalent of the modern distributor. The timing of the spark was adjustable by rotating this mechanism through a lever mounted on the steering column.

Battery-operated ignition
With the universal adaptation of electrical starting for automobiles, and the concomitant availability of a large battery to provide a constant source of electricity, magneto systems were abandoned for systems which interrupted current at battery voltage, used an ignition coil (a type of autotransformer) to step the voltage up to the needs of the ignition, and a distributor to route the ensuing pulse to the correct spark plug at the correct time.

The first reliable battery operated ignition was developed by the Dayton Engineering Laboratories Co. (Delco) and introduced in the 1910 Cadillac. This ignition was developed by Charles Kettering and was a wonder in its day. It consisted of a single coil, points (the switch), a capacitor and a distributor set up to allocate the spark from the ignition coil timed to the correct cylinder. The coil was basically an autotransformer set up to step up the low (6 or 12V) voltage supply to the high ignition voltage required to jump a spark plug gap.

The points allow the coil to charge magnetically and then, when they are opened by a cam arrangement, the magnetic field collapses and a large (20KV or greater) voltage is produced. The capacitor is used to absorb the back EMF from the magnetic field in the coil to minimize point contact burning and maximize point life. The Kettering system became the primary ignition system for many years in the automotive industry due to its lower cost, higher reliability and relative simplicity

Modern ignition systems

Mechanically timed ignition

Most four-stroke engines have used a mechanically timed electrical ignition system. The heart of the system is the distributor. The distributor contains a rotating cam running off the engine's drive, a set of breaker points, a condenser, a rotor and a distributor cap. External to the distributor is the ignition coil, the spark plugs, and wires linking the spark plugs and ignition coil to the distributor.

The system is powered by a lead-acid battery, which is charged by the car's electrical system using a dynamo or alternator. The engine operates contact breaker points, which interrupt the current to an induction coil (known as the ignition coil).

The ignition coil consists of two transformer windings sharing a common magnetic core -- the primary and secondary windings. An alternating current in the primary induces alternating magnetic field in the coil's core. Because the ignition coil's secondary has far more windings than the primary, the coil is a step-up transformer which induces a much higher voltage across the secondary windings. For an ignition coil, one end of windings of both the primary and secondary are connected together. This common point is connected to the battery (usually through a current-limiting resistor). The other end of the primary is connected to the points within the distributor. The other end of the secondary is connected, via the distributor cap and rotor, to the spark plugs.

The ignition firing sequence begins with the points (or contact breaker) closed. A steady charge flows from the battery, through the current-limiting resistor, through the coil primary, across the closed breaker points and finally back to the battery. This steady current produces a magnetic field within the coil's core. This magnetic field forms the energy reservoir that will be used to drive the ignition spark.

As the engine turns, so does the cam inside the distributor. The points ride on the cam so that as the engine turns and reaches the top of the engine's compression cycle, a high point in the cam causes the breaker points to open. This breaks the primary winding's circuit and abruptly stops the current through the breaker points. Without the steady current through the points, the magnetic field generated in the coil immediately begins to quickly collapse. This rapid decay of the magnetic field induces a high voltage in the coil's secondary windings.

At the same time, current exits the coil's primary winding and begins to charge up the capacitor ("condenser") that lies across the now-open breaker points. This capacitor and the coil’s primary windings form an oscillating LC circuit. This LC circuit produces a damped, oscillating current which bounces energy between the capacitor’s electric field and the ignition coil’s magnetic field. The oscillating current in the coil’s primary, which produces an oscillating magnetic field in the coil, extends the high voltage pulse at the output of the secondary windings. This high voltage thus continues beyond the time of the initial field collapse pulse. The oscillation continues until the circuit’s energy is consumed.

The ignition coil's secondary windings are connected to the distributor cap. A turning rotor, located on top of the breaker cam within the distributor cap, sequentially connects the coil's secondary windings to one of the several wires leading to each cylinder's spark plug. The extremely high voltage from the coil's secondary -– often higher than 1000 volts -- causes a spark to form across the gap of the spark plug. This, in turn, ignites the compressed air-fuel mixture within the engine. It is the creation of this spark which consumes the energy that was originally stored in the ignition coil’s magnetic field.

High performance engines with eight or more cylinders that operate at high r.p.m. as in motor racing that demand higher rate and energy of sparks than the simple ignition circuit can provide may use either of these adaptations:

Two complete sets of coils, breakers and condensers can be provided - one set for each half of the engine, which is typically arranged in V-8 or V-12 configuration. Although the two ignition system halves are electrically independent, they typically share a single distributor which in this case contains two breakers driven by the rotating cam, and a rotor with two isolated conducting planes for the two high voltage inputs.
A single breaker driven by a cam and a return spring is limited in spark rate by the onset of contact bounce or float at high rpm. This limit can be overcome by substituting for the breaker a pair of breakers that are connected electrically in series but spaced on opposite sides of the cam so they are driven out of phase. Each breaker then switches at half the rate of a single breaker and the "dwell" time for current buildup in the coil is maximised since it is shared between the breakers.
The Lamborghini V-12 engine has both these adaptations and therefore uses two ignition coils and a single distributor that contains 4 contact breakers.

Except that more separate elements are involved, a distributor-based system is not greatly different from a magneto system. There are also advantages to this arrangement. For example, the position of the contact breaker points relative to the engine angle can be changed a small amount dynamically, allowing the ignition timing to be automatically advanced with increasing revolutions per minute (RPM) and/or increased manifold vacuum, giving better efficiency and performance.

However it is necessary to check periodically the maximum opening gap of the breaker(s), using a feeler gauge, since this mechanical adjustment affects the "dwell" time during which the coil charges, and breakers should be re-dressed or replaced when they have become pitted by electric arcing. This system was used almost universally until the late 1970s, when electronic ignition systems started to appear.

Electronic ignition
The disadvantage of the mechanical system is the use of breaker points to interrupt the low voltage high current through the primary winding of the coil; the points are subject to mechanical wear where they ride the cam to open and shut, as well as oxidation and burning at the contact surfaces from the constant sparking. They require regular adjustment to compensate for wear, and the opening of the contact breakers, which is responsible for spark timing, is subject to mechanical variations.

In addition, the spark voltage is also dependent on contact effectiveness, and poor sparking can lead to lower engine efficiency. A mechanical contact breaker system cannot control an average ignition current of more than about 3 A while still giving a reasonable service life, and this may limit the power of the spark and ultimate engine speed.

Electronic ignition (EI) solves these problems. In the initial systems, points were still used but they only handled a low current which was used to control the high primary current through a solid state switching system. Soon, however, even these contact breaker points were replaced by an angular sensor of some kind - either optical, where a vaned rotor breaks a light beam, or more commonly using a Hall effect sensor, which responds to a rotating magnet mounted on a suitable shaft. The sensor output is shaped and processed by suitable circuitry, then used to trigger a switching device such as a thyristor, which switches a large current through the coil.

The rest of the system (distributor and spark plugs) remains as for the mechanical system. The lack of moving parts compared with the mechanical system leads to greater reliability and longer service intervals. For older cars, it is usually possible to retrofit an EI system in place of the mechanical one. In some cases, a modern distributor will fit into the older engine with no other modifications.

Other innovations are currently available on various cars. In some models, rather than one central coil, there are individual coils on each spark plug, sometimes known as COP or coil on plug. This allows the coil a longer time to accumulate a charge between sparks, and therefore a higher energy spark. A variation on this has each coil handle two plugs, on cylinders which are 360 degrees out of phase (and therefore reach TDC at the same time); in the four-cycle engine this means that one plug will be sparking during the end of the exhaust stroke while the other fires at the usual time, a so-called "wasted spark" arrangement which has no drawbacks apart from faster spark plug erosion; the paired cylinders are 1/4 and 2/3. Other systems do away with the distributor as a timing apparatus and use a magnetic crank angle sensor mounted on the crankshaft to trigger the ignition at the proper time.

During the 1980s, EI systems were developed alongside other improvements such as fuel injection systems. After a while it became logical to combine the functions of fuel control and ignition into one electronic system known as an engine control unit.

Digital Electronic Ignitions
At the turn of the century digital electronic ignition modules became available for small engines on such applications as chainsaws, string-trimmers, leaf blowers, and lawn mowers. This was made possible by low cost, high speed, and small footprint microcontrollers. Digital electronic ignition modules can be designed as either capacitive discharge (CDI) or inductive discharge ignitions (IDI). Capacitive discharge digital ignitions store charged energy for the spark in a capacitor within the module that can be released to the spark plug at virtually any time throughout the engine cycle via a control signal from the microprocessor. This allows for greater timing flexibility, and engine performance; especially when designed hand-in-hand with the engine carburetor.

Engine management
In an Engine Management System (EMS), electronics control fuel delivery, ignition timing and firing order. Primary sensors on the system are engine angle (crank or Top Dead Center (TDC) position), airflow into the engine and throttle demand position. The circuitry determines which cylinder needs fuel and how much, opens the requisite injector to deliver it, then causes a spark at the right moment to burn it.Early EMS systems used analogue computer circuit designs to accomplish this, but as embedded systems became fast enough to keep up with the changing inputs at high revolutions, digital systems started to appear.

Some designs using EMS retain the original coil, distributor and spark plugs found on cars throughout history. Other systems dispense with the distributor and coil and use special spark plugs which each contain their own coil (Direct Ignition). This means high voltages are not routed all over the engine, but are instead created at the point at which they are needed. Such designs offer potentially much greater reliability than conventional arrangements.

Modern EMS systems usually monitor other engine parameters such as temperature and the amount of uncombined oxygen in the exhaust. This allows them to control the engine to minimise unburnt or partially burnt fuel and other noxious gases, leading to much cleaner and more efficient engines.

Labels:

Custom Search

RUDOLF DIESEL



Rudolf Christian Karl Diesel (1858 - 1913)

Early life

Diesel was born in Paris, France, in 1858 as the second of three children to Theodor and Elise Diesel. Diesel's parents were immigrants living in France according to a biographical book by John F. Moon. Theodor Diesel, a bookbinder by trade, had left his home town of Augsburg, Kingdom of Bavaria, in 1848. He met his wife, Elise Strobel, daughter of a Nuremberg merchant, in Paris in 1855 and himself became a leathergoods manufacturer there.

Diesel spent his early childhood in France, but as a result of the outbreak of the Franco-Prussian War in 1870, the family was forced to leave and immigrated to London. Before the end of the war, however, Diesel's mother sent 12-year-old Rudolf to Augsburg to live with his aunt and uncle, Barbara and Christoph Barnickel, so that he might learn to speak German and visit the Königliche Kreis-Gewerbsschule or Royal County Trade School, where his uncle taught mathematics.

At age 14, Rudolf wrote to his parents that he wanted to become an engineer, and after finishing his basic education at the top of his class in 1873, he enrolled at the newly-founded Industrial School of Augsburg. Later, in 1875, he received a merit scholarship from the Royal Bavarian Polytechnic in Munich which he accepted against the will of his perennially cash-strapped parents who would rather have seen him begin earning money.

In Munich, one of his professors was Carl von Linde. Diesel was unable to graduate with his class in July 1879 because of a bout with typhoid. While he waited for the next exam date, he gathered practical engineering experience at the Gebrüder Sulzer Maschinenfabrik in Winterthur, Switzerland. Diesel graduated with highest academic honors from his Munich alma mater in January 1880 and returned to Paris, where he assisted his former Munich professor Carl von Linde with the design and construction of a modern refrigeration and ice plant. Diesel became the director of the plant a scant year later.

In 1883, Diesel married Martha Flasche, and continued to work for Linde, garnering numerous patents in both Germany and France.

In early 1890, Diesel moved his wife and their now three children Rudolf junior, Heddy and Eugen, to Berlin to assume management of Linde's corporate research and development department and to join several other corporate boards there. Because he was not allowed to use the patents he developed while an employee of Linde's for his own purposes, Diesel sought to expand into an area outside of refrigeration. He first toyed with steam, his research into fuel efficiency leading him to build a steam engine using ammonia vapor. During tests, this machine exploded with almost fatal consequences and resulted in many months in the hospital and a great deal of ill health and eyesight problems. He also began designing an engine based on the Carnot cycle, and in 1893, soon after Gottlieb Daimler and Karl Benz had invented the automobile in 1887, Diesel published a treatise entitled Theorie und Construktion eines rationellen Wärmemotors zum Ersatz der Dampfmaschine und der heute bekannten Verbrennungsmotoren or Theory and Construction of a Rational Heat-engine to Replace the Steam Engine and Combustion Engines Known Today and formed the basis for his work on and invention of the Diesel engine.

Later life

Diesel understood thermodynamics and the theoretical and practical constraints on fuel efficiency. He knew that even very good steam engines were only 10-15% thermodynamically efficient, which means that they converted only 10-15% of the energy available in the fuel into useful work. His work in engine design was driven by the goal of much higher efficiency ratios. He tried to design an engine based on the Carnot Cycle. However, he gave up on this and tried to develop his own approach. Eventually he designed his own engine and obtained patent for his design. In his engine, fuel was injected at the end of compression and the fuel was ignited by the high temperature resulting from compression. In 1893, he published a book in German with the title "Theory and design of a rational thermal engine to replace the steam engine and the combustion engines known today" (English translation of the original title in German) with the help of Springer Verlag, Berlin. He managed to build a working engine according to his theory and design. His engine is now known as the diesel engine. Heinrich von Buz (1833-1918) was director (MAN AG) of an engine factory in Augsburg. From 1893-1897, he gave Rudolf Diesel the opportunity to test and develop his ideas according to the book by John F. Moon. Rudolf Diesel obtained patents for his design in Germany and other countries including USA, for example, US Patent 542846 and US Patent 608845.

In the evening of 29 September 1913, Diesel boarded the post office steamer Dresden in Antwerp on his way to a meeting of the "Consolidated Diesel Manufacturing Ltd." in London. He took dinner on board the ship and then retired to his cabin at about 10 p.m., leaving word for him to be called the next morning at 6:15 a.m. He was never seen alive again. Ten days later, the crew of the Dutch boat "Coertsen" came upon the corpse of a man floating in the sea. The body was in such a heavy state of decomposition that they did not bring it aboard. Instead, the crew retrieved personal items (pill case, wallet, pocket knife, eyeglass case) from the clothing of the dead man, which on October 13th were identified by Rudolf's son, Eugen Diesel, as belonging to his father.

Legacy

After Diesel's death, the diesel engine underwent much development, and became a very important replacement for the steam engine in many applications. Because the diesel engine required a heavier, more robust construction than a gasoline engine, it was not widely used in aviation (but see aircraft diesel engine). However, the diesel engine became widespread in many other applications, such as stationary engines, submarines, ships, and much later, locomotives, and in modern automobiles. Diesel engines are most often found in applications where a high torque requirement and low RPM requirement exist. Because of their generally more robust construction and high torque, Diesel engines have also become the workhorses of the trucking industry. Recently, diesel engines have been designed, certified and flown that have overcome the weight penalty in light aircraft. These engines are designed to run on either Diesel fuel or more commonly jet fuel.

The diesel engine has the benefit of running more fuel-efficiently than gasoline engines. Diesel was especially interested in using coal dust or vegetable oil as fuel, his engine in fact ran on peanut oil. Although these fuels were not immediately popular, recent rises in fuel prices coupled with concerns about oil reserves have led to more widespread use of vegetable oil and biodiesel. The primary source of fuel remains what became known as Diesel fuel, an oil byproduct derived from refinement of petroleum.

Labels: